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nize glutamate-mediated excitotoxicity, and to enhance
inhibitory synaptic transmission. Consequently, there is
considerable interest in the identification of anesthetic
agents that might reduce ischemic neuronal injury.
Much of the current investigation has focused on the
effects of anesthetics on the pathophysiology of cere-
bral ischemia, and on their effects on neuronal injury
in animal models of cerebral ischemia. The results of
these investigations reveal a “good news and bad news”
situation [1]. The “good news” is that there is general
agreement that volatile agents, barbiturates, and
propofol reduce ischemic neuronal injury after a short
postischemic recovery period. More recent “bad news”
suggests that this neuroprotective effect is not apparent
after a long postischemic recovery period. The neuro-
protective effect of anesthetics does not appear to be
sustained. In this article, we review recent data about
the effects of anesthetic agents on ischemic brain injury.
We begin with a brief summary of our understanding
of the pathophysiology of cerebral ischemia. This is
followed by a critical appraisal of the neuroprotective
effects of individual anesthetic agents.

Pathophysiology of cerebral ischemia

Uncontrolled release of glutamate during ischemia and
the consequent excessive stimulation of postsynaptic
glutamate receptors (excitotoxicity) play a major role in
the initiation of neuronal injury (Fig. 1). Depolarization
of neurons, mediated by stimulation of the α-amino-3-
hydroxy-5-methylisoxazole-4-propionic acid (AMPA)
type of glutamate receptors, results in Na� influx and
Ca�� influx via the voltage-sensitive calcium channel
(VSCC). In addition, stimulation of N-methyl-d-aspar-
tate (NMDA) receptors leads to intracellular Ca�� and
Na� influx. Excessive intracellular calcium accumula-
tion activates enzymes including proteases, lipases, and
endonucleases. Subsequent damage to cellular lipids,
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Introduction

Cerebral ischemia, although infrequent, is a potentially
devastating complication of anesthesia and surgery. The
exquisite vulnerability of the brain to cessation of blood
flow has fostered a substantial investigative effort to
identify pharmacologic agents that might reduce is-
chemic cerebral injury. Among these, anesthetics have
long been considered logical candidates, given their
ability to suppress cerebral metabolic rate, to antago-
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proteins, and DNA leads to free radical production,
membrane lipid breakdown, and proteolysis, which ulti-
mately leads to neuronal death within a short time after
the onset of ischemia. Excitotoxic neuronal death is
characterized by neuronal swelling, nuclear pyknosis,
acidophilic cytoplasm, and finally, cell lysis.

The role of excitotoxicity in ischemic neuronal injury
is widely acknowledged. Indeed, glutamate antagonists
of both NMDA and AMPA receptors have been shown
to be neuroprotective in global and focal cerebral is-
chemia [2–4]. More recent data, however, indicate that
this neuroprotective efficacy is not sustained. For ex-
ample, NMDA antagonists were able to reduce neu-
ronal injury when injury was evaluated after a short
recovery period (3 days); however, when injury was
evaluated 4 weeks after ischemia, this neuroprotection
was not apparent [5]. The work of Du et al. [6] has
indicated that ischemic injury is a dynamic process char-
acterized by ongoing neuronal loss for at least 14 days
(and probably longer) after ischemia. This delayed neu-
ronal death occurs at a time when glutamate concentra-
tions are at their basal levels; therefore, processes other
than excitotoxicity probably lead to delayed neuronal
death. Du et al. [6] proposed that this delayed death is
caused by apoptosis.

The role of apoptosis in the development of ischemic
neuronal death has been confirmed by a number of
investigations. Neuronal apoptosis, detected by termi-
nal deoxynucleotidyl transferase-mediated dUTP-
biotin in situ nick labeling (TUNEL) staining and DNA

laddering, occurs early during ischemia [6,7]. Although
the mechanism by which apoptosis is triggered is not
clear, signaling pathways of ischemia-induced apoptosis
may include intrinsic (mitochondria-mediated), extrin-
sic (receptor-mediated), and caspase-independent path-
ways (Fig. 2) [8]. The intrinsic pathway is characterized
by cytochrome c release from mitochondria, which
leads to procaspase 9 cleavage and activation. This
ultimately results in activation of effector caspases,
including caspase 3 [9–11]. The extrinsic pathway is
characterized by activation of cell death receptors initi-
ated by their ligands [e.g., FasL, tumor necrosis factor-
α (TNF-α)], which leads to cleavage of procaspase 8.
Cleaved caspase 8 then activates downstream caspases
and results in apoptosis [11–13]. In fact, the administra-
tion of caspase inhibitors has been reported to reduce
neuronal injury after cerebral ischemia [14,15]. By con-
trast, apoptosis-inducing factor (AIF), which is released
from the mitochondria, is also thought to be an impor-
tant candidate responsible for apoptosis via caspase-
independent pathways [8]. Collectively, these data
indicate that a substantial proportion of neuronal death
is caused by apoptosis.

From the foregoing discussion, it is quite clear that in
analysis of the protective effect of anesthetic agents, the
duration of the recovery period (the time at which the
extent of injury is evaluated) must be taken into consid-
eration. A reduction in injury by a given agent after a
short recovery period may not be apparent after
a longer recovery period, i.e., neuroprotection is not
sustained.

Inhalational anesthetics

A number of investigators have demonstrated that vola-
tile anesthetics can reduce ischemic cerebral injury.
Warner et al. [16] demonstrated that both halothane
and sevoflurane substantially reduced the volume of
infarction after focal ischemia compared with that in the
awake state. Miura et al. [17] demonstrated that hippoc-
ampal CA1 injury and cortical injury after near-
complete global ischemia were less in rats anesthetized
with isoflurane compared with those receiving ketamine
or nitrous oxide and fentanyl. Soonthon-Brant et al.
[18] have also shown that infarct volume after focal
cerebral ischemia in rats anesthetized with isoflurane
was significantly lower than that in animals that were
either awake or sedated with fentanyl.

The precise mechanism by which volatile anesthetics
reduce brain injury is not clearly defined. A number of
investigators have indicated that volatile anesthetics can
attenuate excitotoxicity by inhibiting glutamate release
and postsynaptic glutamate receptor-mediated re-
sponses. Beirne et al. [19] examined the effect of hal-

Fig. 1. Possible pathways leading to ischemic neuronal
injury. AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid subtype of glutamate receptor; NMDA; N-
methyl-d-aspartate subtype of the glutamate receptor; IP3,
inositol 1,4,5-triphosphate; ER, endoplasmic reticulum; NOS,
nitric oxide synthase; NO, nitric oxide; FR, free radical
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othane on NMDA-mediated excitotoxicity in primary
neuronal culture and indicated that halothane was
found to antagonize NMDA excitotoxicity. Isoflurane
has been shown to reduce excitotoxic injury mediated
by NMDA and AMPA in vivo in rats [20,21]. Isoflurane
can also reduce the frequency of spreading depression-
like transient depolarizations during focal ischemia [22].
These depolarizations increase calcium influx into neu-
rons, thereby augmenting neuronal injury. Inhibition of
these depolarizations by isoflurane can limit injury
caused by focal ischemia. In addition, Bickler et al.
[23] recently reported that isoflurane neuroprotection
in organotypic hippocampal cultures involves γ-
aminobutyric acid-A (GABA-A) receptors. The influ-
ence of anesthetics on sympathetic tone also has been
proposed as a possible mechanism of volatile anes-
thetic-mediated neuroprotection. Mackensen et al. [24]
investigated the relationship between the adrenergic
response and histologic outcome from near-complete
forebrain ischemia in rats. Isoflurane attenuated the
peripheral sympathetic response to ischemia and im-
proved histologic outcome compared with fentanyl and
nitrous oxide. However, this benefit was reversed by
sympathetic ganglionic blockade, indicating that benefi-
cial effects of isoflurane may result from a partial block-
ade of the sympathetic response.

In most of the investigations of anesthetic-mediated
neuroprotection, the extent of neurologic injury was

Fig. 2. Signaling pathways of ischemia-induced apoptosis,
including intrinsic (mitochondria-mediated), extrinsic
(receptor-mediated), and caspase-independent pathways.
Apoptotic insults lead to cytochrome c release from the mito-
chondria into the cytoplasm, which forms the apoptosome
consisting of Apaf-1 and procaspase 9 and then activate
caspase 9. This ultimately results in activation of caspase 3.
The release of cytochrome c is regulated by proapoptotic
proteins Bax and antiapoptotic proteins Bcl-2 and Bcl-XL.
The death receptor pathway is triggered by the binding of Fas

ligand (FasL) to Fas, which activates caspase 8 via Fas-
associated death domain protein (FADD). A number of
different cell receptors and their ligands can be involved in
this process. Activated caspase 8 then activates caspase 3 and
can also interact with the intrinsic pathway by activating
proapoptotic protein Bid. A caspase-independent pathway
also exists in which apoptotic-inducing factor is released from
the mitochondria and directly causes chromatin condensation
and DNA cleavage. ROS, reactive oxygen species

evaluated after only short recovery periods (up to 7
days) after ischemia. However, as mentioned previ-
ously, ischemic neuronal loss can continue for a long
time after ischemia. Kawaguchi et al. [25] investigated
the long-term effect of isoflurane on ischemic injury
after focal cerebral ischemia in rats. In comparison with
an awake control state, 1.5 MAC of isoflurane sub-
stantially reduced the extent of infarction 2 days after
focal ischemia. However, the infarction-sparing effect
was not apparent after a 2-week recovery period,
indicating that isoflurane delays, but does not prevent,
infarction caused by focal ischemia. Elsersy et al.
[26] recently reported that rats anesthetized with
isoflurane had less neuronal injury 5 days after fore-
brain ischemia compared with those receiving fentanyl–
nitrous oxide, but this neuroprotective efficacy of
isoflurane was not observed at 3 weeks and 3 months
after ischemia.

Although the mechanisms that underlie the progres-
sion of injury in the ischemic brain have not been clari-
fied, neuronal apoptosis can play an important role.
Kawaguchi et al. [27] investigated the effects of
isoflurane on neuronal apoptosis in rats subjected to
focal cerebral ischemia and demonstrated that the in-
crease in size of cerebral infarction in isoflurane-treated
animals parallels the appearance of markers of
apoptosis such as TUNEL and caspase 9- and caspase 3-
positive cells. In addition, Inoue et al. [28,29] investi-
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gated the effects of combination of isoflurane (during
ischemia) and caspase inhibitors (every 24h for 14 days)
on neuronal injury in rats subjected to focal ischemia.
They demonstrated that the broad spectrum caspase
inhibitor zVAD-fmk and the caspase 8 inhibitor IETD-
fmk prevented infarct extention in isoflurane-treated
animals and that sustained neuroprotection over 14
days was observed when isoflurane was combined with
these caspase inhibitors. These data suggest that pre-
vention of apoptosis may be a target for future interven-
tions for long-term neuroprotection.

In contrast, the work of Engelhard and colleagues has
shown that volatile agent-mediated neuroprotection is
sustained even 4 weeks after ischemia [30]. In a model
of hemispheric ischemia combined with hemorrhagic
hypotension, sevoflurane was remarkably effective in
preventing neuronal death in the hippocampus. A
closer examination of the data of Engelhard et al. may
provide an explanation for the apparent discrepancies
between their results and those of other investigators.
In the study of Engelhard et al. [30], the severity of the
ischemia was such that in the control nonanesthetized
group, injury was relatively mild. Remarkably, no injury
was detected in the sevoflurane-anesthetized group.
These data indicate that the ischemia-inducing insult
was relatively mild in comparison to the severity of
insult in other investigations. Therefore, a reasonable
explanation for these results is that volatile agent-
mediated neuroprotection can be sustained if the
ischemic insult is mild; with moderate to severe insults,
volatile agents are not able to effect long-term protec-
tion of the brain.

Barbiturates

There have been a number of demonstrations of the
protective efficacy of barbiturates on outcome from
permanent and transient focal cerebral ischemic insults
in a variety of animal models [31–37]. The majority
of animal studies have clearly demonstrated the
neuroprotective efficacy of barbiturates administered
before, during, or after focal ischemia, although compa-
rable results in humans are lacking. In contrast, the
neuroprotective efficacy of barbiturates on outcome
from global ischemia is controversial [38–45]. Initial re-
ports from animal models of global ischemia demon-
strated that barbiturates administered before, during, or
after cardiac arrest improved neurological outcome,
whereas subsequent studies failed to show neuro-
protective efficacy of barbiturates in models of global
ischemia. A recent report by Amakawa et al. [45] dem-
onstrated that thiopental administered before or after
forebrain ischemia reduced neuronal damage in gerbils,
although treatment with thiopental after ischemia re-

quired a larger dose than that before ischemia. In hu-
mans, however, a randomized clinical study in comatose
survivors of cardiac arrest showed no beneficial effect of
thiopental loading on neurological outcome compared
with those receiving standard therapy [46].

The neuroprotective effect of barbiturates was
initially attributed to their ability to reduce cerebral
metabolism; however, a critical appraisal of the avail-
able literature indicated that metabolic depression does
not appear to play a significant role in anesthetic-
mediated neuroprotection. Warner et al. [47] first
demonstrated that the reduction in infarct volume in
rats subjected to focal ischemia was similar whether
pentobarbital was administered in EEG-burst-
suppression doses or in doses approximately one-third
of that required to produce EEG burst suppression.
These data were confirmed in a similar study conducted
by Schmid-Elsaesser and colleagues [48]. Another
interesting finding is that electrophysiologically com-
parable doses of the various classes of barbiturates
(i.e., thiopental, methohexital, and pentobarbital) can
have different neuroprotective efficacy in a model of
focal ischemia, suggesting that mechanisms other than,
or at least in addition to, metabolic suppression may
contribute to the protective effect of barbiturates
[49].

Barbiturate-mediated neuroprotection has been
attributed to redistribution of cerebral blood flow to
injured areas, Na-channel and glutamate receptor
blockade, inhibition of calcium influx, inhibition of
free radical formation, and potentiation of GABA-ergic
activity. Zhu et al. [50] demonstrated that thiopental
attenuated NMDA- and AMPA-mediated glutamate
toxicity in hippocampal slices in vitro. Kimbro et al.
[20] have also shown that pentobarbital can reduce
AMPA excitotoxicity in vivo in rats. In addition,
thiopental was found to attenuate ischemia-induced
intracellular calcium increases in the hippocampus
and cortex [51]. These effects were attributed to a
thiopental-mediated inhibition of both VSCC and
NMDA receptors. Pentobarbital can also reduce the
frequency of transient ischemic depolarizations during
focal ischemia [52]. This mechanism might also con-
tribute to the neuroprotective effect of barbiturates.
Barbiturates can act as a free-radical scavenger to
protect the neurons in the brain. Shibuta et al. [53]
demonstrated that thiopental, but not pentobarbital,
protected both cortical and hippocampal primary
cultured neurons from nitric oxide-induced cytotoxicity
in a dose-dependent manner.

In most studies to date, the neuroprotective efficacy
of barbiturates has been evaluated after only a short
recovery period. Whether barbiturate-mediated brain
protection is sustained is not known. This is an impor-
tant issue that needs experimental clarification.
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Propofol

It has been suggested that propofol is an ideal anes-
thetic for neurosurgery because of its presumed benefi-
cial effects on cerebral physiology (a reduction in
cerebral metabolic rate, a reduction in cerebral blood
flow, and brain relaxation). Laboratory investigations
have also revealed that propofol might also protect the
brain against ischemic injury. Young et al. [54] reported
that infarct volume in rats anesthetized with pro-
pofol was significantly less than that in isoflurane-
anesthetized animals. Pittman et al. [55] demonstrated
that neurologic and histologic outcome were similar in
pentobarbital- and propofol-anesthetized rats subjected
to focal ischemia. Given that pentobarbital is consid-
ered to have neuroprotective properties, these data in-
directly indicate that propofol can also reduce ischemic
injury. Ito et al. [56] examined the effect of propofol on
neuronal damage induced by forebrain ischemia in ger-
bils and indicated that neuronal injury in the hippocam-
pal CA1 and parietal cortex was significantly attenuated
by propofol administration. Gelb et al. [57] reported
that propofol administration for a period of 4h, initiated
immediately and 1 h after focal ischemia, significantly
reduced infarct volume compared with that in the
awake control rats.

The neuroprotective effect of propofol has been at-
tributed to its antioxidant properties, its potentiation of
GABA-A-mediated inhibition of synaptic transmission,
and its inhibition of glutamate release. Propofol has
been reported to directly scavenge free radicals and to
decrease lipid peroxidation [58]. Yamaguchi et al. [59]
reported that propofol attenuated delayed neuronal
death by preventing lipid peroxidation induced by tran-
sient forebrain ischemia in the hippocampal CA1 sub-
field in gerbils. Sitar et al. [60] indicated that propofol
can prevent and reverse peroxide-induced inhibition
of excitatory amino acid uptake (glutamate transport)
in cultured astrocytes. These findings suggest that
neuroprotection by propofol might be a reflection of a
direct scavenging effect against reactive oxygen species
generated during the ischemia and reperfusion. Ito et al.
[56] demonstrated that pretreatment with the GABA-
A antagonist bicuculline significantly inhibited the
neuroprotective effects of propofol in a gerbil model of
forebrain ischemia, suggesting a role for GABA-A
receptors in propofol-induced neuroprotection.
Engelhard et al. [61] demonstrated that cerebral
glutamate concentration was decreased by 60% with
propofol compared with nitrous oxide/fentanyl anesthe-
sia in rats subjected to forebrain ischemia.

In the foregoing studies, neurologic assessment was
performed after only a short recovery period (up to 7
days). Recently, Bayona et al. [62] showed that propofol
infusion decreased infarction volume 3 days after insult

in an endothelin-induced striatal ischemia model. How-
ever, when the animals were evaluated 3 weeks after
ischemia, no difference between propofol-treated or
control animals could be detected histologically. In this
regard, the neuroprotective efficacy of propofol is simi-
lar to that of isoflurane: propofol delays, but does not
prevent, cerebral infarction after focal ischemia. In con-
trast, Engelhard et al. [63] investigated the effect of
propofol on neuronal damage and key proteins of
apoptotic cell death in a model of hemispheric ischemia
combined with hemorrhagic hypotension. They demon-
strated that propofol, compared with nitrous oxide and
fentanyl, reduced neuronal damage and favorably
modulated apoptosis-regulating proteins for at least
28 days, suggesting long-term neuroprotection by
propofol. As mentioned above, the severity of ischemia
in this model was, however, relatively mild so that no
injury was detected in the propofol-anesthetized group.
These results may suggest that propofol, as well as vola-
tile agents, may be neuroprotective over a long postis-
chemic recovery period if the ischemic insult is mild, but
that propofol-mediated neuroprotection is not sus-
tained with moderate to severe insults.

Conclusion

The available data indicate that barbiturates, volatile
anesthetics, and propofol can reduce ischemic cerebral
injury (Fig. 3). The effects of these agents appear to be

Fig. 3. A summary of relationships between the duration of
ischemia and severity of injury in cerebral ischemic models.
After a short recovery period (usually less than 4 days),
barbiturate, propofol, and volatile anesthetics can be
neuroprotective (dashed line) compared with awake and ni-
trous oxide (N2O)/fentanyl anesthesia (solid line). However,
neuronal injury in animals anesthetized with barbiturate,
propofol, and volatile anesthetics can increase over a longer
recovery period (usually more than 14 days, arrow) if ischemic
injury is moderate or severe. If ischemic injury is mild (brief),
such maturation of neuronal injury may not be observed
(open arrow). Sustained anesthetic neuroprotection may
therefore be limited to brief ischemia
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directed primarily against excitotoxic injury. The long-
term effects of barbiturates on postischemic neurons
are currently not known. In the case of volatile agents
and propofol, neuroprotection may be sustained if the
ischemic insult is relatively mild. If, however, the injury
is such that some neuronal injury occurs under anesthe-
sia, then the reduction in injury may not be sustained.
These agents delay the development of cerebral injury
but do not prevent it. However, by delaying the devel-
opment of injury, volatile agents and propofol can in-
crease the therapeutic window for the application of
other agents directed against apoptosis. Considering
that the pathophysiology of cerebral ischemia is com-
plex and that a number of diverse processes are initiated
by the ischemic insult, a single pharmacologic interven-
tion is unlikely to result in sustained neuroprotection. A
combination of different approaches that target specific
stages of the evolution of ischemic injury may be
required.
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